
ICES REPORT 13-19

July 2013

Volumetric T-spline Construction Using Boolean
Operations

by

L. Liu, Y. Zhang, T.J.R. Hughes, M.A. Scott, T.W. Sederberg

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: L. Liu, Y. Zhang, T.J.R. Hughes, M.A. Scott, T.W. Sederberg, Volumetric T-spline Construction Using
Boolean Operations, ICES REPORT 13-19, The Institute for Computational Engineering and Sciences, The
University of Texas at Austin, July 2013.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2013 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2013 to 00-00-2013  

4. TITLE AND SUBTITLE 
Volumetric T-spline Construction Using Boolean Operations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Texas at Austin,Institute for Computational Engineering
and Sciences,Austin,TX,78712 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

19 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Volumetric T-spline Construction Using
Boolean Operations

Lei Liu1, Yongjie Zhang1,∗, Thomas J.R. Hughes2, Michael A. Scott3 and
Thomas W. Sederberg4

1 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

2 Institute for Computational Engineering and Sciences, The University of Texas
at Austin, Austin, TX 78712, USA

3 Department of Civil and Environmental Engineering, Brigham Young University,
Provo, UT 84602, USA

4 Department of Computer Science, Brigham Young University, Provo, UT 84602,
USA

Summary. In this paper, we present a novel algorithm for constructing a volumet-
ric T-spline from B-reps inspired by Constructive Solid Geometry (CSG) Boolean
operations. By solving a harmonic field with proper boundary conditions, the input
surface is automatically decomposed into regions that are classified into two groups
represented, topologically, by either a cube or a torus. We perform two Boolean op-
erations (union and difference) with the primitives and convert them into polycubes
through parametric mapping. With these polycubes, octree subdivision is carried
out to obtain a volumetric T-mesh, and sharp features detected from the input
model are also preserved. An optimization is then performed to improve the quality
of the volumetric T-spline. Finally we extract trivariate Bézier elements from the
volumetric T-spline, and use them directly in isogeometric analysis.

Key words: volumetric T-spline, Boolean operations, polycubes, parametric map-
ping, sharp feature, isogeometric analysis

1 Introduction

Isogeometric analysis [7, 13] bridges Computer Aided Design (CAD) and Fi-
nite Element Analysis (FEA) by using the same basis functions for geometric
modeling and numerical simulation. For many important application areas, it
has been demonstrated that isogeometric analysis, using smooth basis func-
tions, is more accurate and robust than traditional FEA which uses C0 basis
functions [8, 5, 32]. Additionally, the exact CAD geometry is embedded in

∗Corresponding author. Tel: (412) 268-5332; Fax: (412) 268-3348; Email:
jessicaz@andrew.cmu.edu (Yongjie Zhang).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. CAD Assembly. (a) One temperature field to split the top torus region; (b)
splitting result; (c) Boolean operations; (d) parametric mapping result (the torus
primitive is used for the top component, and the difference operation is used to
create four holes in the bottom base component); (e) solid T-spline; (f) solid T-
spline with T-mesh; (g) solid T-spline with Bézier representation; (h) some elements
are removed to show the interior of (g); and (i) isogeometric analysis result.

the analysis at the coarsest level of discretization. In many cases, a trivariate
(solid) description of an object is required for analysis. Unfortunately, current
CAD representations of solid objects are composed of a collection of surfaces,
see Fig. 1. To employ the isogeometric paradigm for solids, a trivariate param-
eterization of the interior of the solid must be generated. This is an important
and challenging problem in isogeometric analysis [20].

Several papers have studied isogeometric analysis using solid NURBS
(Non-uniform Rational B-spline) construction [13, 32, 4, 30]. However, NURBS
have some drawbacks that limit their use for isogeometric analysis. For ex-
ample, NURBS [18] does not support local refinement. In addition, gaps of-
ten happen between two neighboring NURBS surface patches. To overcome
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these limitations, Sederberg invented T-splines [23], which support local re-
finement naturally by introducing T-junctions [22]. T-splines were introduced
into isogeometric analysis in [6, 4]. The initial research on T-splines-based iso-
geometric analysis was limited to surface models. Reference [21] introduced
a data structure for isogeometric analysis using T-splines. Conversion of un-
structured meshes to T-splines has also been studied [28, 29]. A generalized
algorithm was also developed to extract Bézier elements from volumetric T-
splines, connecting the spline modeling with analysis data structure.

As for the construction of volumetric T-spline, different approaches have
been developed. A method based on Periodic Global Parameterization was
proposed to convert triangular meshes to T-splines [16]. Other research focuses
on parametric mapping of an input tetrahedral meshes to construct solid T-
splines [9]. A harmonic mapping method has been proposed for developing a
3D solid sphere from a 2-manifold for use in computer graphics and medical
imaging [11]. In [25], a parametric mapping between a polycube and a surface
geometry was presented to construct trivariate T-splines from input triangular
meshes. Mapping, subdivision and pillowing techniques have been used to
generate good quality T-splines for genus-zero [33] and arbitrary genus objects
[27]. Li et al. [15] proposed a generalized polycube method using T shape
templates to handle high-genus models and extraordinary nodes.

Despite these advances, it remains a challenging problem to automatically
create a volumetric T-spline for models with arbitrary complicated geometry
and topology. How to automatically and robustly split complex geometry
into different components and transfer the input geometric information to the
desired volumetric models are still open problems.

Inspired by CSG Boolean operations [1, 3, 24], in this paper we present
a novel algorithm to construct trivariate solid T-spline models using two
Boolean operations: union and difference. In our algorithm, we compute a
harmonic field together with the boundary information to split the domain,
and use primitives (cube and torus) and Boolean operations to generate poly-
cubes1. Parametric mapping is then employed to transfer the input informa-
tion to the volumetric T-spline. The four main contributions that this pa-
per makes to the problem of volumetric T-splines parametrization are: (1)
a harmonic field with proper boundary conditions is computed to automati-
cally split the input geometry into different hexahedral components; (2) two
Boolean operations (especially the difference operation) are developed to con-
struct polycubes conveniently and flexibly; (3) a novel torus primitive is intro-
duced to deal with torus-like objects or holes, yielding few number of extraor-
dinary nodes and high quality elements; and (4) sharp features are preserved
and mesh quality is improved.

1Conventionally, a polycube is comprised of cubes of equal sizes with two neigh-
boring cubes sharing a complete face [2]. In this paper, the “cubes” can be arbitrary
hexahedra of different sizes.
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Although the proposed algorithm is automatic and robust for a large class
of complex models, it also has limitations. For example, it cannot handle some
special objects such as a tetrahedron or a cone, and it cannot preserve the
input surface parameterization.

The remainder of this paper is organized as follows. The main steps of
the algorithm (illustrated in Fig. 1) are overviewed in Section 2. Section 3
discusses extracting boundary information. Section 4 talks about different
primitives and Boolean operations among them. Section 5 explains T-spline
construction. Section 6 shows some results, and Section 7 draws conclusions
and points out the future work.

2 Algorithm Overview

Polycube-based methods for volume parametrization [27, 26, 14] perform do-
main decomposition by splitting the model into hexahedral regions that map
to cubes. However, sometimes the models are so complicated that it is diffi-
cult to split the domain automatically. Inspired by CSG Boolean operations
[1], here we propose to use Boolean operations to build the polycubes. As
shown in Fig. 2, there are three main stages to construct a trivariate solid
T-spline from the given CAD model: curve extraction, domain decomposition
and Boolean operations, and volumetric T-spline construction.

Fig. 2. Three stages of volumetric T-spline construction using Boolean operations.
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The first stage initializes all the necessary boundary information for the
following stages. We first classify the curve information from the CAD model
into two groups, and then use the commercial software ABAQUS to generate
the surface mesh.

Based on the curve information and surface mesh, we perform domain
decomposition and Boolean operations to generate polycubes. A harmonic
field with proper boundary conditions is computed to automatically split the
surface model into different components, topologically equivalent to either a
cube or a torus. As shown in Fig. 1, each torus is composed topologically of
four cubes. All cubes generated by the domain decomposition are then union
together and holes (represented topologically as cubes) are subtracted (see
Fig. 1(d)). We will refer to the resulting configuration as a polycube, realizing
that we take some liberties in using the term in this way. The CAD surface
is then mapped to the polycube surface.

The volumetric T-spline is obtained by performing an octree subdivision
on the polycube. Here we use a separate octree for each cube and force two
neighboring cubes to have the same parameterization at the shared boundary.
All the detected sharp feature information is preserved in this step. Pillow-
ing, smoothing and optimization are then used to improve the quality of the
T-mesh. To obtain a gap-free T-mesh, we apply templates [28, 29] to each
irregular node in the T-mesh. Finally, volumetric T-spline is generated and
Bézier elements are extracted for isogeometric analysis.

3 Curve Extraction

Most CAD models contain sharp edges or features. It is best if these features
map to edges of the polycube (although we do not require that each edge of the
polycube maps to a feature in the CAD model). We need to identify which
of these curves are best represented as polycube edges during the Boolean
difference stage of the algorithm. We call such edges feature curves and the
remaining edges we call difference curves. For example in Fig. 3, the model
is the subtraction of a cylinder from a cube. The blue lines are the feature
curves of the model, and the red lines are the difference curves.

Curve Classification: We classify the input boundary information into
three groups: corners, curves, and patches. All the surface models are formed
by these three groups. Curves are the parametric boundary lines on the sur-
face. In Fig 3, there are 14 curves: C1 ∼ C14 (blue and red lines), which are the
edges of the cube and the cylinder. Corners are the intersection points of the
curves, which are also the corners of the cubes (the eight blue dots V1 ∼ V8).
Several curves connecting consecutively form the boundary of a surface patch.
In Fig. 3, there are 7 patches: six cube faces and one circumferential surface
of the cylinder (the gray and red surfaces, S1 ∼ S7). In this model, curves
C1 ∼ C12 are feature curves. Curves C13 ∼ C14 are difference curves. These
curves contain the input sharp feature information and will be used to split
one model into different components.
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Fig. 3. Classification of curve information. Blue line: feature curves; and red lines:
difference curves.

Sharp Feature Detection: There are two types of sharp features in
the designed models: sharp curves and sharp corners. Sharp curves are those
curves across which the surface continuity is C0, and the sharp corners are
the intersection points of the sharp curves. For example in Fig. 3, all the 12
edges of the cube (C1 ∼ C12) and the top and bottom outlines of the cylinder
(C13 ∼ C14) are sharp curves, and the 8 corners of the cube (V1 ∼ V8) are
sharp corners.

4 Domain Decomposition and Boolean Operations

To perform Boolean operations, we first split the model into different hexa-
hedral components, and then use primitives to represent them.

4.1 Domain Decomposition

For simple CAD models, we can directly use the feature curves to generate the
polycube edges, and use the difference curves to define virtual components.
Here a virtual component is a component which does not exist in the real
model, but it can be deducted from the design process and boundary infor-
mation. These virtual components are the result of CSG difference operation
in design. For example in Fig. 3, the feature and difference curves can split
the model into one cube and one virtual cylinder.

Harmonic fields have been used successfully to split a complex geometry
into coherent regions [33, 27]. Temperature distribution is an example of a
harmonic field. The idea is to assign high and low temperature values to two
different points on the model, and the harmonic field computed with those two
boundary conditions will express the steady-state temperature distribution
across the model. For example in Fig. 4, we use the following five steps to
split the torus model into four hexahedral components:
1. First we find out the points with largest/smallest Z-coordinates, and as-

sign them the max and min temperature respectively;
2. A harmonic field is calculated on the surface mesh, see Fig. 4(a);
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3. We find out the critical points in the field, which are Min, Max, and two
saddle points (C1, C2). They form two cross sections;

4. We assign min temperature to one cross section, and max temperature to
the other one. The harmonic field is recalculated using the new boundary
conditions and the temperature distribution is shown in Fig. 4(b); and

5. Four equally-spaced points are selected on each cross section curve (black
curves) in Fig. 4(b), which will be set as the cube corners. Then we trace
the gradient lines and finally split them into four parts to obtain all the
red curves in Fig. 4(c).

Discussion: By using a harmonic field with proper boundary conditions,
we can in many cases automatically split a complex geometry into multiple
hexahedral components. Finding a proper boundary condition often requires
user interactions. Sometimes we may need to compute the harmonic field
several times before we can obtain an optimal domain decomposition result.

4.2 Two Primitives
Primitives are basic objects in design and geometrical modeling. Typical prim-
itives in CSG include cuboids, cylinders, prisms, pyramids, spheres and cones.
In our algorithm, we only use two primitives: the cube and the torus. Further-
more, unlike conventional CSG, our primitives are used in a topological sense,
so, for example, the edges of our cubes need not have equal length. Fig. 5
shows how to map these two primitives from the physical space to the para-
metric space. It is easy to map one of our cubes to a unit cube. For a torus,
we use four consecutive unit cubes to represent it, with the left face of the
first cube connecting to the right face of the last cube.

4.3 Two Boolean Operations
There are two basic Boolean operations in our polycube generation: union and
difference. We develop templates to handle the Boolean operations among

(a) (b) (c)

Fig. 4. Splitting one torus model into four cubes. (a) Set the top and bottom points
with max and min temperature respectively, calculate the harmonic temperature
field, and find out critical points (extreme and saddle points); (b) recalculate the
harmonic field by setting the whole cross section to be max/min temperature; and
(c) split the model with isoparametric and gradient lines.
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(a) (b)

Fig. 5. Two primitives from the physical space to the parametric space. (a) Cube;
and (b) torus.

the primitives: union of two cubes, difference of two cubes, union of a cube and
a torus, difference of a cube and a torus. Since two cubes may have different
sizes and relative position, we have multiple cases for the union and difference
operations between them, see Fig. 6(a-b). As for the operations between a cube
and a torus, we will select one representative cube out of the four cubes of the
torus (the red cube in Fig. 6(c, d)), and then use it to perform all the Boolean
operations with other cubes. Of the two Boolean operations, difference is a
special one in our polycube generation. Based on difference curves, we build
virtual components. As shown in Fig. 7, after finding out the boundary of the
cylinder in the input model, we fill the holes on the surface mesh by adding
new triangles. Then a virtual cylinder is reconstructed and we carry out all
the following work using the new mesh. After building T-meshes, elements
inside the filled holes will be deleted by using the difference operation.

(a) (b)

(c) (d)

Fig. 6. Boolean operations of cubes and torus with different sizes and relative
position. (a) Four cases for the union operation of two cubes; (b) four cases for the
difference operation of two cubes; (c) the union operation of a cube and a torus; and
(d) the difference operation of a cube and a torus.

Discussion: The torus primitive and the difference operation are two
new features in our polycube generation, which provide more convenience
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Fig. 7. Steps to perform the difference operation. Holes are filled to create a virtual
component (virtual cylinder).

and flexibility in handling designed CAD models. The resulting T-splines will
have better surface continuity and high quality elements.

There is a special situation we should discuss here. Let us take a cube
and subtract a cylinder from it (Fig. 3). Topologically, it can be represented
either as cube-minus-cylinder using the difference operation, or as a torus.
Our algorithm can represent the object in either way. If the inner and outer
boundaries of the object have no sharp corner, then we consider it more like
a torus or hollow cylinder and choose the torus primitive. Otherwise, if sharp
corner happens in the inner and/or outer boundaries, we choose to use the
difference operation to handle it.

5 Volumetric T-spline Construction

To construct volumetric T-splines, we first need to generate the T-spline con-
trol mesh, or T-mesh. There are five main steps in this stage: adaptive octree
subdivision and mapping, sharp feature preservation, pillowing and quality
improvement, handling irregular nodes, trivariate T-spline construction and
Bézier extraction.

5.1 Adaptive Octree Subdivision and Mapping

An initial T-mesh is generated by applying an adaptive octree subdivision
to the polycubes and mapping to the boundary. For each cube, we create
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one hexahedral root element, and then we subdivide one element into eight
smaller ones recursively to obtain the T-mesh after mapping. For each bound-
ary element, we check the local distance from the T-mesh boundary to the
input boundary, and subdivide the element if the distance is greater than
a given threshold ε. Each obtained T-mesh node has both parametric and
physical coordinates. The parametric coordinates represent its position in the
polycubes. For each boundary node, the physical coordinates are its corre-
sponding position on the boundary. The physical coordinates of each interior
node are calculated by a linear interpolation. T-junctions are introduced if
two neighboring elements have different subdivision levels.

(a) (b) (c)

Fig. 8. Preserving sharp corner and sharp curve. (a) Sharp corner (red corner)
and sharp curves (blue curves) before preservation; (b) preserving sharp features by
duplicating sharp curves (green curves) and inserting zero-length edges (red edges);
and (c) Bézier element representation of the model.

5.2 Sharp Feature Preservation and Quality Improvement
Sharp Feature Preservation: To preserve the detected sharp features, we
duplicate their corresponding parametric lines in the polycubes [28]. It aims to
decrease the local boundary surface continuity across the sharp curves to C0

by repeating knots. As shown in Fig. 8, a sharp curve (blue curve) is shared
by two neighboring surface patches. We duplicate the sharp curve on each
patch (green curves), and connect corresponding points using edges with zero
parametric length (red short edges). Then the spline surface is C0-continuous
across the sharp curves. In Fig. 8(a-b), a sharp corner is shared by three sharp
curves. By duplicating each sharp curve on its neighboring surface patches,
the sharp corner is also preserved.

Quality Improvement: To improve the initial T-mesh quality, we adopt
pillowing, smoothing and optimization techniques. Pillowing is a sheet inser-
tion technique that inserts one layer around the boundary [19, 31], which
guarantees each element has at most one face lying on the boundary and also
improve the surface continuity across the polycube edges from C0 to C2. The
sharp feature information on the input surface can also be transferred to the
new surface. When the corner of one cube lies on a smooth sharp curve, the
parametric mapping method may generate poor quality elements around that
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(a) (b) (c) (d)

Fig. 9. Pillowing along the circumferential direction of a cylinder. (a-b) A solid
cylinder before (a) and after (b) pillowing; (c-d) a cube with a cylindrical hole
before (c) and after (d) pillowing.

corner. Fig 9(a) shows the T-mesh of a solid cylinder model. On its top face
the four cube corners of the polycube have bad quality (green elements). To
deal with this situation, we insert one new layer around the circumferential
direction, see the magenta layer in Fig 9(b). After smoothing, the mesh qual-
ity is improved significantly. This method can also be applied to the surface
of virtual cylinders, see Fig. 9(c-d).

After pillowing, smoothing and optimization [33] are used to improve the
T-mesh quality. There are four types of nodes in the T-mesh: sharp corners,
sharp curve nodes, surface nodes and interior nodes. In smoothing, they are
relocated in different ways. Sharp corners are fixed; sharp curve nodes move
along the curve direction; surface nodes move on the surface; and interior
nodes move towards its mass center. In optimization, each node is moved
toward an optimal position that maximizes the worst Jacobian. The Jacobian
is defined based on trilinear basis functions of T-mesh elements. For a T-mesh
element, the Jacobian is defined as

J = det(JM ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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7∑
i=0
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7∑
i=0
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1)

where Ni is a trilinear shape function. The scaled Jacobian is

Js =
J

‖ JM (·, 0) ‖ ‖ JM (·, 1) ‖ ‖ JM (·, 2) ‖
, (2)

where JM (·, 0), JM (·, 1) and JM (·, 2) represent the first, second and last col-
umn of the Jacobian matrix, JM , respectively. To get better optimization
results, we further improve our optimization method in two ways: (1) op-
timize the Jacobian value defined based on Bézier basis functions; and (2)
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optimize the step size when moving the control nodes. Due to the enhanced
robustness of high order basis functions, distorted T-meshes may still be used
in isogeometric analysis [17], and the scaled Jacobian value is one quantita-
tive standard to evaluate the quality of T-splines. The Jacobian is evaluated
at the Gaussian integration points and the corner points of one element. In
step size optimization, the objective function is f(δ) = min(1− J ′s(δ)), where
J ′s is the new Jacobian value with respect to updated coordinates, and δ is
the step size. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [12] is
used here to perform the optimization and get an optimal step size.

5.3 Irregular Nodes and Volumetric T-spline Construction
Extraordinary nodes or partial extraordinary nodes [33] are two types of ir-
regular nodes in T-spline construction, which may introduce gaps to solid
T-spline. These irregular nodes will reduce the continuity in its neighbor-
hood and increase the degrees of freedom during analysis. Different templates
have been developed to handle the irregular nodes. The basic idea is to insert
zero parametric length edges around the irregular nodes to make sure the
extracted knot interval is correct. In referring knot vectors, knot values are
repeated whenever an irregular node is met. The detailed templates and knot
insertion algorithm are explained in [28, 29].

The rational solid T-spline is defined in [29]. Its basis function has the
property of partition of unity by definition, which makes it suitable for anal-
ysis. With the valid T-mesh, referred local knot vectors and the definition of
rational basis function, we can construct desired volumetric T-splines. Since
the volumetric T-spline is defined on local knot vectors, we extract Bézier rep-
resentation of solid T-spline for isogeometric analysis. Transformation matrix
from T-spline basis functions to Bézier basis functions is calculated by the
Oslo knot insertion algorithm [10]. With the extracted Bézier elements, we
can perform isogeometric analysis on the volumetric T-spline models.

6 Results and Isogeometric Analysis
We have applied the construction algorithm to several models on a 2.93GHz
Intel Xeon CPU with 16GB RAM. Table 1 provides the statistics of four mod-
els: torus (Fig. 10), eight (Figs. 11-12), rod (Fig. 13), and CAD assembly (Fig.
1). We use the scaled Jacobian with Bézier basis function to evaluate the qual-
ity of the trivariate T-splines. The number of irregular nodes on the surface
and in the interior are also counted. We can see that our algorithm is fast and
it produces high quality volumetric T-splines for isogeometric analysis.

Fig. 10 shows the result of our torus primitive. It has no irregular nodes on
the surface, and the generated elements have high quality with the minimum
Jacobian of 0.42. For the eight model in Figs. 11-12, we compute the harmonic
field twice to obtain the desired domain decomposition result. Similar to Fig.
4, we first set the bottom and top points with the min and max temperature
respectively, compute the harmonic field and critical points to define three
cross sections. As shown in Fig. 12(a), we then set two cross sections with the
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 10. Torus model. (a) Splitting result; (b) Boolean operation and parametric
mapping result; (c) T-mesh; (d) solid T-spline; (e) solid T-spline with T-mesh; (f)
solid T-spline with Bézier representation; (g) some elements are removed to show
the interior of (f); and (h) isogeometric analysis result.

min temperature and the middle cross section with the max temperature, and
obtain a new harmonic field. By tracing its isoparametric lines and gradient
directions, we can split the two torus regions. Some red curves in the middle
region between the two tori are obtained by finding the shortest distance on
the surface. Finally we obtain the splitting result as shown in Fig. 12(b).
The parametric mapping result, the Boolean operations and the constructed
volumetric T-spline model are shown in Fig. 12(c-g). We also compared our
result with the result from another polycube method [27]. Our method yields
fewer number of irregular nodes on the surface (8 vs 16) with a better min
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Jacobian (0.31 vs 0.10). In the rod model (Fig. 13) and CAD assembly model
(Fig. 1), we compute the harmonic field to split the torus region. For the
other regions, we trace the shortest distance among the corners to split the
model. Both the torus primitive and the difference operation are used here
in addition to the union of cubes, yielding good surface continuity and high
quality elements. We have also developed a 3D isogeometric analysis solver for
static mechanics analysis [27]. For the torus, eight and CAD assembly model,
we fix the bottom and apply a displacement load on the top part. Differently
for the rod model, we fix one side of the torus shape region and apply load
on the other side. The analysis results are reasonable, which prove that our
models are suitable for analysis.

(c)

(a) (d) (b)

Fig. 11. Distribution of irregular nodes on the T-spline surface of eight model. (a)
Polycube method in [27] with details in (c); and (b) Boolean operation method with
details in (d).

Table 1. Statistics of all the tested models

Model T-mesh Irregular nodes Bézier Jacobian Time
nodes (surface, interior) elements (worst, best) (s)

Torus 5,920 (0, 128) 3,072 (0.42, 1.00) 11.8
Eight 8,323 (8, 196) 4,096 (0.31, 1.00) 15.5
Rod 27,198 (24, 448) 27,296 (0.34, 1.00) 99.1

Assembly 25,788 (48, 564) 10,408 (0.27, 1.00) 104.2

7 Conclusion and Future Work
We have presented a novel algorithm to use Boolean operations to generate
trivariate volumetric T-splines from input CAD models. With proper bound-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12. Eight model. (a) One temperature field to split the two torus regions; (b)
splitting result; (c) Boolean operations; (d) parametric mapping result; (e) solid T-
spline; (f) solid T-spline with Bézier representation; (g) some elements are removed
to show the interior of (f); (h) isogeometric analysis result;

ary conditions, a harmonic field is computed to automatically split the input
geometry into hexahedral components. In addition to the cube, a new primi-
tive (torus) is introduced in the polycube construction. After that, we perform
the union and difference Boolean operations to convert the components into
primitives and then map them onto the polycube. Through octree subdivision
and mapping, we obtain the initial T-mesh. After making the T-mesh valid,
we construct solid T-spline. The constructed solid T-spline and their Bezier
representation show the efficiency and robustness of the algorithm. The pre-
sented algorithm is automatic and robust for a large class of complex models
with fewer extraordinary nodes produced than other methods, but there are
other models that it cannot handle, such as a tetrahedron or a cone. In addi-
tion, the input surface parameterization cannot be preserved. As part of our
future work, we would like to investigate these limitations.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. Rod model. (a) One temperature field to split the bottom torus region;
(b) splitting result;(c) Boolean operations; (d) parametric mapping result (the torus
primitive is used in the bottom component, and the difference operation is used to
create the small hole in the top component); (e) solid T-spline; (f) solid T-spline
with T-mesh; (g) solid T-spline with Bézier representation; (h) some elements are
removed to show the interior of (g); and (i) isogeometric analysis result.
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Master’s thesis, University PolyTècnica De Catalunya, Barcelona Spain, 2010.

13. T. J.R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry, and mesh refinement. Computer Meth-
ods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

14. B. Li, X. Li, K. Wang, and H. Qin. Generalized polycube trivariate splines. In
Shape Modeling International Conference, pages 261–265, 2010.

15. B. Li, X. Li, K. Wang, and H. Qin. Surface mesh to volumetric spline con-
version with Generalized Poly-cubes. IEEE Transactions on Visualization and
Computer Graphics, 99:1–14, 2012.
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